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Abstract: We develop a detailed and comprehensive description of neutrino oscillations

driven by the 1-3 mixing in the matter of the Earth. The description is valid for the realistic

(PREM) Earth density profile in the whole range of nadir angles and for neutrino energies

above 1 GeV. It can be applied to oscillations of atmospheric and accelerator neutrinos. The

results are presented in the form of neutrino oscillograms of the Earth, i.e. the contours of

equal oscillation probabilities in the neutrino energy-nadir angle plane. A detailed physics

interpretation of the oscillograms, which includes the MSW peaks, parametric ridges, local

maxima, zeros and saddle points, is given in terms of the amplitude and phase conditions.

Precise analytic formulas for the probabilities are obtained. We study the dependence of

the oscillation pattern on θ13 and find, in particular, that the survival probability Pee < 1/2

appears for sin2 2θ13 as small as ∼ 0.009. We consider the dependence of the oscillation

pattern on the matter density profile and comment on the possibility of the oscillation

tomography of the Earth.
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1. Introduction

Substantial future progress in neutrino physics will be related to the long baseline exper-

iments as well as studies of the cosmic and atmospheric neutrinos. The key element of

these experiments is that neutrinos propagate long distances inside the Earth before reach-

ing detectors. Oscillations in the matter of the Earth change flavor properties of neutrino

fluxes, which opens up possibilities to

∗On leave from the National Research Centre Kurchatov Institute, Moscow, Russia

– 1 –



J
H
E
P
0
5
(
2
0
0
7
)
0
7
7

• study dynamics of various oscillation effects;

• determine yet unknown oscillation parameters: 1-3 mixing, deviation of the 2-3 mix-

ing from maximal and its octant, the type of the neutrino mass hierarchy, and CP-

violation;

• perform the oscillation tomography of the Earth;

• search for various new effects caused by non-standard neutrino interactions and/or

by exotic physics (such as violation of Lorentz or CPT invariance).

The sensitivity of present-day experiments to the corresponding effects, that appear

usually as small corrections to the leading oscillation phenomena (e.g. νµ ↔ ντ vacuum

oscillations), is rather low. In the case of atmospheric neutrinos this is related to low

fluxes and therefore low statistics of events, and also to uncertainties in the fluxes. The

accelerator neutrino beams are, in principle, well controlled, however in majority of the

projects the baselines are relatively short, whereas the very long baseline experiments (e.g.

with neutrino factories) employ high energy neutrinos. This means that the region of

energies Eν ∼ (3 − 10) GeV and nadir angles Θν = 0 − 70◦, where the most interesting

oscillation phenomena occur, is not covered. Therefore one needs to rely on high precision

measurements of the suppressed “tails” of these phenomena. The dilemma is whether

to study small effects with a number of systematical errors and degeneracies, or develop

experimental approaches that will allow to cover the regions of large oscillation effects. The

latter option is realized in the concepts of very long baseline accelerator experiments and

very large volume atmospheric neutrino detectors.

In connection with possible future experimental developments and discussions of new

strategies of research, a detailed and comprehensive study of physics of the neutrino oscil-

lations in the Earth is needed. Some studies in this direction have been carried out in the

past.

In the matter of the Earth, the resonance enhancement of νe ↔ νµ,τ oscillations can

take place [1, 2], with the MSW resonance peak at Eν/∆m2 ∼ 2.5 × 103 GeV/eV2 [3, 4].

It was also recognized that the size of the Earth is comparable with the neutrino refraction

length, and consequently strong enhancement of oscillations can occur for rather deep

trajectories (small nadir angles) and not too small mixing angles: sin2 2θ13 > 0.03. With

decreasing baseline, first the matter effect and then the oscillation effect disappear. This

phenomenon [1, 5], termed “vacuum mimicking”, implies that for short baselines the

flavour transitions are described by the vacuum oscillation formula.

For 1-2 mixing the resonance is in the neutrino channel and at rather low energies:

Eν ∼ 0.1 GeV. For non-zero 1-3 mixing the MSW resonance peak related to the atmospheric

mass splitting is at Eν ∼ 6GeV. The peak is narrow and, depending on the mass hierar-

chy, the enhancement occurs in the neutrino (normal hierarchy) or antineutrino (inverted

hierarchy) channels. Possibilities to observe this resonance peak have been explored in

connection to the measurements of the mixing angle θ13 and determination of the neutrino

mass hierarchy [6 – 13]. Furthermore, it was realized that matter effects can also strongly

influence νµ ↔ ντ oscillations [14 – 16].

– 2 –
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A qualitatively new oscillation phenomenon can be realized for neutrinos crossing the

core of the Earth due to a sharp change of the density at the border between the core

and the mantle [17 – 22]. In particular, for non-zero 1-3 mixing, the existence of an ad-

ditional peak is predicted in the energy distribution between the peaks due to the MSW

resonances in the core and mantle. This core-mantle effect was interpreted as being due

to the parametric enhancement of neutrino oscillations [17, 19, 20].1 The additional peak

is a manifestation of the parametric resonance for 3 layers (1.5 period of the “castle wall”

profile) in matter [23]. The parametric resonance occurs when the variation of the matter

density along the neutrino trajectory is in a certain way correlated with the values of the

oscillation parameters [24 – 26]. A different interpretation of this peak, as being due to

an interference between the contributions to the oscillation amplitude from different layers

of the Earth’s mantle and core, has been discussed in [18, 21, 22]. It was uncovered [27]

that the parametric resonance condition is fulfilled also at large energies (above the mantle

MSW resonance), leading to the appearance of two parametric peaks in the nadir angle

distribution. For general consideration of evolution in the multi-layer media, see [28].

Apart from the large scale structures of the density profile, effects of small scale density

perturbation have been explored [29].

Analytic approaches have been developed to describe the physics of various oscillation

effects, to understand the influence of the density profile modifications on the oscillation

probabilities and also to simplify numerical computations. Many studies have been per-

formed in the constant density approximation [3, 4] or approximation of several layers of

constant densities [17 – 22, 25, 26, 30, 14, 31]. For the varying densities within the layers

a perturbation-theory approach has been developed in [32] for the description of the solar

neutrino oscillations in the Earth.

For 3ν mixing the analytic approaches employ various expansions in the small param-

eters sin2 θ13 and/or in the ratio of the mass squared differences ∆m2
21/∆m2

31 [33]. For the

case of non-constant-density matter, different perturbation theory approaches have been

developed for oscillations in low density [34, 35] and high density [36, 27] media. In [27]

an analytic description of oscillations in the high energy limit has been worked out for the

case of the realistic (PREM) density profile. The influence of the Earth density profile on

the oscillation probabilities has also been considered in [37].

To some extent, the results obtained so far had fragmentary character. This paper is

the first one in a series of papers we devote to a detailed and comprehensive study of oscil-

lations of neutrinos inside the Earth. Here we present a thorough description of neutrino

oscillations caused by non-zero 1-3 mixing, with the emphasis on the physics of the phe-

nomenon. In particular, we study the complex pattern and interplay of various oscillation

resonances. We perform our study in terms of “neutrino oscillograms” of the Earth: con-

tours of constant oscillation probabilities in the plane of neutrino energy and nadir angle.

These plots have been presented in several earlier publications as illustrations [21, 8, 38].

Here we use them as the main tool of the study.

1The parametric resonance in neutrino oscillations in the Earth was first discussed for νµ ↔ νs oscil-

lations of atmospheric neutrinos in [17], though the parametric peak appeared in some early numerical

computations [3, 4].
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The knowledge of the oscillograms and their properties will allow us to identify the

regions of sensitivity of the oscillation probabilities to various neutrino parameters as well

as to the Earth density profile, which can help to develop the criteria for the event selections

and optimal experimental setups.

In this paper we:

(i) identify the generic structures of the oscillograms and reveal their physical origin;

(ii) introduce the amplitude and phase conditions, which are generalizations of the max-

imal amplitude and odd-π phase conditions for oscillations in vacuum or constant-

density matter to the case of several matter layers of varying densities. We show that

these generalized conditions have several different realizations;

(iii) show that the positions of all the important structures in the oscillograms are deter-

mined by the different realizations of the generalized amplitude and phase conditions.

We also present analytic formulas for these conditions, which allows us to describe

the dependence of the structures on yet unknown neutrino parameters, such as θ13,

and on the parameters characterizing the Earth density profile;

(iv) present, using these conditions, a complete physics interpretation of the oscillograms.

We also discuss the oscillation curves (the spatial dependence of the oscillation prob-

abilities) for the relevant values of the oscillation parameters and give their graphical

interpretation in terms of the analogy between neutrino oscillations and spin preces-

sion in a magnetic field;

(v) propose an accurate description of the oscillation probabilities based on perturbation

theory in deviation of density within the matter layers from the constant ones, follow-

ing a similar description proposed for low energy solar neutrinos. We obtain analytic

expressions (in terms of several known functions) and produce the oscillograms using

this approximation;

(vi) study the dependence of the oscillograms on the 1-3 mixing, on the parameters of

the density profile of the Earth and on the channel of oscillations.

The paper is organized as follows. In section 2, after some generalities, we introduce

the neutrino oscillograms of the Earth, concentrating mainly on νe ↔ νµ,τ transitions.

We discuss the accuracy of the constant-density-layers approximation of the Earth matter

profile and describe the graphical representation of the flavour conversion. In section 3

we give the physics interpretation of the oscillograms. In section 4 we derive approximate

analytic formulas for oscillation probabilities for a realistic matter density profile of the

Earth. In section 5 we study the dependence of the oscillograms on the 1-3 mixing and on

the Earth density profile, and we discuss the oscillation probabilities for the other oscillation

channels. Discussion and conclusions follow in section 6.
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2. Neutrino oscillograms of the Earth

2.1 Context. Evolution matrix

We consider the three-flavor neutrino system with the state vector νf ≡ (νe, νµ, ντ )
T . Its

evolution in matter is described by the equation

i
dνf

dx
=

(

UM2U †

2Eν
+ V̂ (x)

)

νf , (2.1)

where Eν is the neutrino energy and M2 ≡ diag(0, ∆m2
21, ∆m2

31) is the diagonal matrix of

neutrino mass squared differences. V̂ (x) ≡ diag(V (x), 0, 0) is the matrix of matter-induced

neutrino potentials with V (x) ≡
√

2GF Ne(x), GF and Ne(x) being the Fermi constant and

the electron number density, respectively. The mixing matrix U defined through νf = Uνm,

where νm = (ν1, ν2, ν3)
T is the vector of neutrino mass eigenstates, can be parameterized

as

U = U23IδU13I−δU12 . (2.2)

Here the matrices Uij = Uij(θij) describe rotations in the ij-planes by the angles θij, and

Iδ ≡ diag(1, 1, eiδ), where δ is the Dirac-type CP-violating phase.

Let us introduce the evolution matrix (the matrix of transition and survival amplitudes)

S(x, x0), which describes the evolution of the neutrino state over a finite distance: from

x0 to x. To simplify the presentation, throughout the paper we will use the notation

S(x) ≡ S(x, 0) and S ≡ S(L), where L is the total length of the trajectory. The matrix

S(x) satisfies the same evolution equation as the state vector (2.1):

i
dS(x)

dx
= H(x)S(x) . (2.3)

The solution of equation (2.3) with the initial condition S(0) = 1 can be formally written

as

S(x) = T exp

(

−i

∫ x

0
H dx

)

. (2.4)

It is convenient to consider the evolution of the neutrino system in the propagation

basis, ν̃ = (νe, ν̃2, ν̃3)
T , defined through the relation

νf = U23Iδ ν̃ . (2.5)

As follows from (2.1) and (2.2), the Hamiltonian H̃, that describes the evolution of the

neutrino vector of state ν̃, is

H̃(x) =
1

2Eν
U13U12M

2U †
12U

†
13 + V̂ (x) . (2.6)

This Hamiltonian does not depend on the 2-3 mixing and CP-violating phase. The depen-

dence on these parameters appears when one projects the initial state on the propagation

– 5 –
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basis and the final state back onto the original flavor basis. Explicitly, the Hamiltonian H̃

reads

H̃(x) =
∆m2

31

2Eν







s2
13 + s2

12 c2
13 r∆ + 2V (x)Eν/∆m2

31 s12 c12 c13 r∆ s13 c13(1 − s2
12 r∆)

. . . c2
12 r∆ −s12 c12 s13 r∆

. . . . . . c2
13 + s2

12 s2
13 r∆







(2.7)

where cij ≡ cos θij , sij ≡ sin θij and

r∆ ≡ ∆m2
21

∆m2
31

. (2.8)

According to (2.5), the evolution matrix S̃(x) in the basis (νe, ν̃2, ν̃3) is related to S(x) by

the transformation:

S(x) = Ũ S̃(x) Ũ †, Ũ ≡ U23Iδ. (2.9)

The evolution of S̃(x) is given by the equation analogous to eq. (2.3) with the Hamiltonian

H̃(x).

2.2 High energy neutrino approximation

For sufficiently high energies (Eν > 1 − 2GeV) one can neglect the 1-2 mass splitting.

Then, according to (2.7), the state ν̃2 decouples from the rest of the system and does not

evolve. Therefore, if we parameterize S̃ in the basis (νe, ν̃2, ν̃3) as

S̃ =







Aee Ae2 Ae3

A2e A22 A23

A3e A32 A33






(2.10)

we find that in this approximation Ae2 = A2e = A23 = A32 = 0, A22 = 1 and the evolution

matrix in the flavor basis takes the form

S ≈







Aee s23Ae3 c23Ae3

s23A3e c2
23A22 + s2

23A33 −s23c23(A22 − A33)

c23A3e −s23c23(A22 − A33) s2
23A22 + c2

23A33






, (2.11)

where we omitted the CP-phase factor e−iδ since CP-violating effects are absent in the limit

r∆ → 0. We will consider the complete 3ν system in the next publication [39]. Denoting

by PA the 2ν transition probability νe ↔ νµ,τ :

PA ≡ |Ae3|2 = |A3e|2 , (2.12)

we obtain from (2.11)

P (νe → νe) = 1 − PA, (2.13)

P (νe → νµ) = P (νµ → νe) = s2
23PA , (2.14)

P (νe → ντ ) = P (ντ → νe) = c2
23PA , (2.15)

P (νµ → νµ) = 1 − s4
23PA − 2s2

23c
2
23 [1 − Re A33] , (2.16)

P (ντ → ντ ) = 1 − c4
23PA − 2s2

23c
2
23 [1 − Re A33] , (2.17)

P (νµ → ντ ) = P (ντ → νµ) = −s2
23 c2

23 PA + 2s2
23c

2
23 [1 − ReA33] . (2.18)

– 6 –



J
H
E
P
0
5
(
2
0
0
7
)
0
7
7

The formulas in eqs. (2.13), (2.18) reproduce the probabilities derived in [20].

Thus, in the approximation ∆m2
21 = 0 the dynamical problem is reduced to two

flavor evolution problem. Throughout this paper we work in the basis where, for a 2-flavor

neutrino system, H11 = −H22 = − cos 2θ13∆m2/4E+V/2. This can be always achieved by

subtracting from H a matrix proportional to the unit matrix and correspondingly rephasing

the neutrino vector of state. This symmetric Hamiltonian is related to the Hamiltonian of

the 1-3 subsystem H̃(13), obtained from eq. (2.7) by taking the limit r∆ = 0 and removing

the decoupled state ν̃2, as

H̃(13) = H +

(

∆m2

4Eν
+

V

2

)1 . (2.19)

For the 2ν case the unitary evolution matrix can be parameterized as

S =

(

α β

−β∗ α∗

)

, |α|2 + |β|2 = 1. (2.20)

For density profiles that are symmetric with respect to the midpoint of the neutrino trajec-

tory (for brevity, symmetric profiles), T invariance leads to the equality of the off-diagonal

elements of the evolution matrix, β = −β∗, which means that β is pure imaginary [40].

For a single layer of constant density the solution can be written explicitly:

S(x) =

(

cos φ(x) + i cos 2θm sinφ(x) −i sin 2θm sin φ(x)

−i sin 2θm sinφ(x) cos φ(x) − i cos 2θm sinφ(x)

)

, φ(x) ≡ ω̄ x .

(2.21)

Here is θm is the mixing angle in matter and φ(x) is the half-phase of oscillations in matter

with

ω̄ = ω(V̄ ) ≡

√

(

cos 2θ13
∆m2

31

4Eν
− V̄

2

)2

+

(

sin 2θ13
∆m2

31

4Eν

)2

. (2.22)

The moduli squared of the elements of S reproduce the well-known probabilities for oscil-

lations in a uniform medium. Thus, in the notation of eq. (2.20),

α = cos φ + i cos 2θm sin φ , β = −i sin 2θm sin φ . (2.23)

In what follows we will generalize this result to the cases of several layers of constant

densities and also of changing densities within the layers.

In a non-uniform density medium the adiabatic half-phase of oscillations is defined as

φ(x) ≡
∫ x

0
ω(x′) dx′ , ω(x) ≡ ω(V (x)) . (2.24)

2.3 Neutrino oscillograms of the Earth

For given values of |∆m2
31|, sin2 2θ13, and the type of neutrino mass hierarchy, the oscillation

probabilities depend on the neutrino energy Eν and the nadir angle of its trajectory Θν .

Therefore a complete description of the oscillation pattern can be given by contours of equal

oscillation probabilities in the (Eν , Θν) plane. We call the resulting figures the neutrino

– 7 –
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oscillograms of the Earth. The plots of this type were produced for the first time by

P. Lipari in 1998 (unpublished) and then appeared in several later publications [21, 8, 38].

Here we will employ this kind of plots as the main tool of our study.

We use in our calculations the matter density distribution inside the Earth, ρ, as

given by the PREM model [41]. The number of electrons per nucleon, Ye ≡ NemN/ρ

where mN is the nucleon mass, equals Ye = 0.497 in the mantle and Ye = 0.468 in the

core [32]. For the energies Eν > (1 − 2) GeV the oscillation length in vacuum lν exceeds

1000 km, and therefore the effects of smaller-scale density perturbations are averaged out.

Furthermore, The density profile experienced by neutrinos along any trajectory inside the

Earth is symmetric with respect to the midpoint of the trajectory,2 so that

V (x) = V (L − x), (2.25)

where L = 2R cos Θν is the length of the trajectory. As we will see below, to a large extent

this feature determines the properties of the oscillation probabilities and the structure of

the oscillograms.

For numerical calculations we use the current best-fit value of ∆m2
31 = 2.5×10−3 eV; in

the case of negligible effects of 1-2 splitting, changing ∆m2
31 is equivalent to correspondingly

rescaling the neutrino energy.

In figure 1 we present the oscillograms for the transition probability PA for normal mass

hierarchy and several values of sin2 2θ13. The oscillograms have two regions, separated by

Θν = 33.1◦ that corresponds to the nadir angle of the border between the core and the

mantle. For Θν < 33.1◦, the neutrino trajectories cross the core of the Earth, so that

neutrinos traverse two mantle layers and one core layer. For brevity we call this part the

core domain of the oscillogram. Conversely, the region Θν > 33.1◦ corresponds to the

mantle-only crossing trajectories, and we call it the mantle domain. As follows from the

figure, there are several salient, generic features of the oscillation picture:

• the MSW resonance pattern (resonance enhancement of the oscillations) for mantle-

only crossing trajectories, with the main peak at Eν ∼ (5 − 7) GeV;

• three parametric resonance ridges in the core domain, at Eν > 3GeV;

• the MSW resonance pattern in the core domain, Eν < 3GeV, with the core resonance

ridge at Eν = 2.5 − 2.7 GeV;

• regular oscillatory pattern for low energies: valleys of zero probability and ridges

in the mantle domain and more complicated pattern with local maxima and saddle

points in the core domain.

The small windings of the contours at Θν = 65◦ and 70◦ correspond to the borders of

the transition zone between the inner and upper mantle, while the windings at Θν = 11◦

are due to the border between the inner and outer core.

2We neglect possible short-scale inhomogeneities of the matter density distribution in the Earth which

may violate this symmetry.
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Figure 1: Neutrino oscillograms of the Earth. Shown are the contours of constant probability PA

(edges of the shadowed regions) in the plane of the nadir angle of the neutrino trajectory Θν and

neutrino energy Eν , for different values of the mixing angle θ13.
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2.4 Constant-density layers approximations

As we shall see, the main features of the oscillograms can be well understood using the

approximation of constant-density layers for the density distribution inside the Earth.

Furthermore, this consideration allows us to evaluate the sensitivity of the oscillograms

to changes of the profile. In figures 2 and 3 we show the oscillograms computed for two

different approximations of this kind:

• Approximation of fixed constant-density layers, when the Earth density profile is

described by the core and mantle layers of constant densities that are the same for

all neutrino trajectories. This approximation has been widely used in the literature.

For definiteness, we have taken ρ1 = 5.5 g/cm3 and ρ2 = 11.5 g/cm3, which roughly

correspond to the average densities in the core and in the mantle. In figure 2 we

compare the PA-oscillograms calculated in this approximation and the exact results.

The approximation reproduces the oscillation pattern qualitatively well, with all the

features present. However, quantitatively its accuracy is not high above Eν > 3 GeV,

in particular, in the resonance region, and for deep trajectories Θν < 60◦. For

instance, one can observe an upward shift of the approximate contours compared

to the exact ones by about 1GeV at Eν ≃ (6 − 10) GeV. The shift decreases with

increasing Θν .

• Approximation of the path-dependent (trajectory-dependent) constant density layers.

For each trajectory we find the average potentials V̄1 and V̄2 in the mantle and in the

core, respectively,

V̄i(Θν) =
1

Li(Θν)

∫ Li

0
Vi(x) dx , i = 1, 2, (2.26)

where Li(Θν) is the trajectory length in the i-th layer, and then use the oscillation

probability formulas for one or three layers of constant densities. In figure 3 we show

the PA oscillograms calculated in this approximation. One can see that the accuracy

of the approximation is noticeably better than that of the fixed-density approxima-

tion, especially for the core-crossing trajectories. Again, the largest difference appears

for the deep mantle trajectories and Eν > 5GeV.

As can be seen from figures 2 and 3, the accuracy of the constant-density layers ap-

proximations improves with decreasing neutrino energy, the reason being that the matter

effects become less important for small Eν . These approximations also in general work

better for the core-crossing trajectories because they are dominated by the evolution in

the core and because inside the core the density changes only by about 30%, whereas in

the mantle it changes by about a factor of two. For mantle-only crossing trajectories, the

approximations work better for shorter trajectories, closer to the surface. Here again the

matter effects becomes weaker due to the vacuum mimicking phenomenon [1, 5].

Thus, the approximations of constant-density layers reproduce correctly the qualitative

structure of the oscillograms obtained with the realistic PREM density profile of the Earth.

All the resonance peaks, ridges and other structures present for the PREM-profile appear
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Figure 2: The PA oscillograms for the PREM density profile (colored regions; grayscale on black-

and-white printouts) and for the fixed constant-density layers approximation (black curves).

also in the approximate profile calculations, though their location and shape is not always

well reproduced. Therefore one can use these approximations for understanding the main

qualitative features of the results for realistic profiles.

2.5 Graphical representation

For illustrative purposes we will use the graphical representation of the 2ν oscillations

based on their analogy with spin precession in a magnetic field [3, 42]. Let us introduce

the neutrino “spin” vector in the flavor space ~s = {sX , sY , sZ} with the components

sX(x) = Re[S∗
11(x)S12(x)] , sY (x) = Im[S∗

11(x)S12(x)] , sZ(x) = |S11(x)|2 − 1

2
. (2.27)

These components are essentially the elements of the density matrix. The evolution equa-

tion for the vector ~s(x) can be obtained from the evolution equation for S(x), given in

eq. (2.3):
d~s

dx
= 2 ~B(x) × ~s(x) , (2.28)

where

~B(x) = ~B(V (x)) =
∆m2

4Eν

{

sin 2θ, 0,
2EνV (x)

∆m2
− cos 2θ

}

. (2.29)
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Figure 3: The PA oscillograms for the PREM density profile (colored regions; grayscale on black-

and-white printouts) and for the path-dependent constant-density layers approximation (black

curves).

In this representation the oscillations in a medium with constant density is equivalent to

a precession of the vector ~s on the surface of the cone (which we will call the precession

cone) with the axis ~B(V̄ ) and the opening angle 2θm. According to eq. (2.29) the axis of

the cone is located in the (X, Z) plane and the angle between the cone axis and the Z axis

equals 2θm. In a medium with non-constant density profile the cone axis turns following

the change of the angle 2θm(V (x)). The opening angle of the cone does not change in the

adiabatic case, and it changes if the adiabaticity is broken.

3. Physics interpretation of the oscillograms

In this section we give a physics interpretation and description of the four main structures of

the oscillograms mentioned in section 2.3, as well as of the contours of zero probability. We

show that the positions of the main structures of the oscillograms are described by various

realizations of just two conditions: the generalized amplitude and phase conditions.

3.1 Resonance enhancement of oscillations in the mantle

The oscillation pattern in the mantle is determined by the resonance enhancement of the
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oscillations [1, 2]. In the constant-density approximation, for a given Θν the probability PA

is an oscillatory function of energy, which is inscribed in the resonance curve sin2 2θm(Eν).

The position of the maximum of the resonance peak is given by the MSW resonance

condition:

Eν = ER(Θν) =
∆m2

31 cos 2θ13

2V̄1(Θν)
, (3.1)

where V̄1(Θν) is the average value of the potential along the trajectory characterized by Θν

(see eq. (2.26)). Eq. (3.1) determines the resonance line in the (Eν , Θν) plane. With the

increase of Θν the average potential decreases and consequently ER increases. According

to figure 1, for the MSW resonance in the mantle we have ER ∼ 6 GeV. The resonance

width ∆Eν/ER ∼ 2 tan 2θ13.

The condition Eν = ER(Θν) ensures that the amplitude of oscillations is maximal and

we will call it the amplitude (or resonance) condition.

Another condition that should be met to obtain the absolute maximum of the transition

probability, PA = 1, is the phase condition:

2φ(Eν ,Θν) = 2ω(V̄ , Eν)L(Θν) = (2k + 1)π (3.2)

Since the size of the Earth is comparable with the refraction length in the mantle l0 = 2π/V̄ ,

the condition of the absolute maximum (3.2) can only be fulfilled for k = 0, i.e. when the

length of the neutrino trajectory coincides with the half of the oscillation length in matter.

The phase condition (3.2) gives another curve in the (Eν , Θν) plane. The intersection of

the resonance line (3.1) and the phase condition line (3.2) determines the position of the

absolute maximum of PA. Combining (3.1) and (3.2) we find that the absolute maximum

corresponds to the situation when for the resonance energy the oscillation phase is π:

2ω(V̄ , ER)L(Θν) = π . (3.3)

Since L = 2R cos Θν and at the resonance 2ω = sin 2θ13(∆m2
31/2Eν), the condition (3.3)

yields

cos Θν =
πEν

R sin 2θ13∆m2
31

. (3.4)

With the increase of θ13 the peak shifts to smaller values of cos Θν (see figure 1). Eq. (3.4)

has been used in refs. [15, 11, 12] in discussions of the maximal matter effects and of the

determination of the neutrino mass hierarchy.

Let us now reformulate the resonance and the phase conditions for the case of varying

density within the mantle. For this we first express these conditions in terms of the elements

of the evolution matrix using the explicit results for matter of constant density, eqs. (2.20)

and (2.21), and then use the obtained conditions also in the case of varying matter density.

As concerns to the resonance condition, cos 2θm = 0, it can be written according to

eqs. (2.20) and (2.23) as α = α∗, i.e.

S
(1)
11 = S

(1)
22 , (3.5)

or equivalently,

Im S
(1)
11 = 0 , (3.6)
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where the superscript indicates the number of layers. This generalization, however, goes

beyond the original MSW-resonance condition. For the constant density case it gives

cos 2θm sinφ = 0 . (3.7)

This equation has two realizations: the original one

cos 2θm = 0 , (3.8)

and

φ = πk, (k = 1, 2, . . .) (3.9)

and the latter corresponds to PA = 0, which is realized at low energies. In the case of

varying density (e.g., in the mantle of the Earth), there is no factorization of the resonance

condition (3.6), as in eq. (3.7). However, when the density varies slowly enough along

the neutrino path, in certain limits eq. (3.6) is still approximately realized in the form of

eqs. (3.8) or (3.9). At low energies the MSW resonance condition is not fulfilled in the

Earth’s mantle, and therefore the only possible realization of (3.6) is the one in eq. (3.9).

In contrast to this, for large energies and small distances eq. (3.9) is not satisfied, and

the only way eq. (3.6) can be implemented is through the MSW resonance (3.8). In the

intermediate region neither of the two conditions (3.8) and (3.9) is satisfied. Thus, in

the resonance region eq. (3.6) interpolates between the MSW resonance condition and the

condition φ = π.

As for the phase condition, φ = π/2 + πk, again we can rewrite it in terms of the

elements of the evolution matrix, and from eqs. (2.20) and (2.23) we get

Reα ≡ ReS
(1)
11 = 0 . (3.10)

The absolute maximum of the transition probability occurs when both conditions (3.6)

and (3.10) are satisfied simultaneously. In this case S
(1)
11 = 0 and PA = 1. This situation

corresponds to φ = π/2, and from figure 1 we see that it is realized only for sin2 2θ13 & 0.08.

3.2 Parametric ridges and generalized resonance condition

For core-crossing trajectories and Eν > 3 GeV the oscillatory picture is characterized by

three ridges of enhanced oscillation probability. The ridges are the curves along which the

probability decreases most slowly from its local or absolute maximum. The lower-energy

ridge, which we will call the ridge “A”, corresponds to the energies in between those of the

MSW resonances in the core and in the mantle, Eν > (3−6) GeV. It was interpreted in [17,

19, 20] as being due to the parametric enhancement of neutrino oscillations. The other two

ridges, “B” and “C”, extend above the MSW resonance energy in the mantle. They were

also identified as the effects of the parametric enhancement of neutrino oscillations [27].

Here we shall further elaborate on this interpretation.

Recall that the parametric resonance occurs in oscillating systems with varying pa-

rameters when the rate of the parameter change is in a special correlation with the values
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of the parameters themselves. Neutrino oscillations in matter can undergo parametric en-

hancement if the length and size of the density modulation are correlated in a certain way

with neutrino parameters [24, 25].

An example admitting exact analytic solution, and in fact, relevant for our discussion,

is the “castle wall” density profile [25, 19]. This is a periodic step function with one period

consisting of two layers of widths L1 and L2 and electron number densities N1 and N2. For

2-flavor neutrino oscillations, the evolution matrix over one period of density modulation

(two layers) can be obtained as the product of the evolution matrices for the individual

layers, S(2) = S
(1)
2 S

(1)
1 , where S

(1)
i coincides with S(x) given in eq. (2.21). The resulting

matrix S(2) can be written as

S(2) = Y 1− iσ · X , (3.11)

where Y and X = (X1, X2, X3) are real parameters satisfying Y 2 +X2 = 1 and σi are the

Pauli matrices in the flavor space. The oscillation probability for an arbitrary number of

layers traversed by neutrinos can be written as a product of the amplitude

A =
X2

1 + X2
2

X2
1 + X2

2 + X2
3

, (3.12)

which does not depend on the number of the layers, and an oscillating factor, which depends

on this number [19]. The amplitude A reaches its maximum when X3 = 0, or explicitly [19]

X3 = −(s1c2 cos 2θ1 + s2c1 cos 2θ2) = 0, (3.13)

where s1,2 ≡ sin φ1,2 and c1,2 ≡ cos φ1,2. Here 2φ1,2 are the oscillation phases acquired in

the layers 1 and 2, and θ1,2 are the corresponding mixing angles in matter. Note that in

the constant-density limit (N1 = N2 or θ1 = θ2 = θm) this condition reduces to eq. (3.7)

with φ = φ1 + φ2. For sin φ 6= 1 it coincides with the MSW resonance condition, which is

the maximum amplitude condition for oscillations in a matter of constant density.

As was pointed out above, the Earth density profile seen by neutrinos with core-crossing

trajectories can be very well approximated by three layers of constant densities, which is

nothing but a piece of the castle wall profile; the layers “1” and “2” have to be identified

with the Earth’s mantle and core, respectively.

The parametric resonance condition (3.13) can be readily generalized to the case of

non-constant densities in the mantle and the core of the Earth, though the generalization

is not unique. Indeed, according to (3.11) the condition X3 = 0 can be written in terms of

elements of the evolution matrix for two layers as the equality of the diagonal elements:

S
(2)
11 = S

(2)
22 . (3.14)

We will use this equality for an arbitrary density distribution within the layers and call it

the generalized resonance condition. Note that parameterization (3.11) of the matrix S(2)

implies that the generalized resonance condition can also be formulated as the requirement

that the diagonal element of S(2) be real: Im S
(2)
11 = 0.

In the right panels of figure 4 we show the curves of the generalized parametric res-

onance condition. Apparently, all the three parametric ridges are very well described by

these curves.
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3.3 Parametric effects and collinearity condition

Another approach to the generalization of the parametric resonance condition to the case of

the layers of non-constant density is based on the consideration of the evolution amplitudes

in the individual layers. For the particular case of two layers of constant densities, similar

considerations have been presented in [22].

For density profiles consisting of two layers we have

S(2) = S2 S1 =

(

S
(2)
11 S

(2)
12

−S
(2)∗
12 S

(2)∗
11

)

, (3.15)

where

S
(2)
11 = α2 α1 − β2 β∗

1 , S
(2)
12 = α2 β1 + β2 α∗

1 , (3.16)

and αi, βi for each layer have been defined in eq. (2.23). The sum of the two complex

numbers in the transition amplitude S
(2)
12 can potentially lead to the largest possible result

(if they add in the same phase and not in the anti-phase) if the two contributions to S12

have the same complex phase (modulo π):

arg(α2β1) = arg(β2α
∗
1) mod(π) . (3.17)

It can also be rewritten as

arg(α1α2β1) = arg(β2) mod(π) . (3.18)

We shall call this condition the collinearity condition. It is an extremality condition for the

two-layer transition probability under the constraint of fixed transition probabilities in the

individual layers. In other words, if the absolute values |βi| of the transition amplitudes

are fixed while their arguments are allowed to vary, the transition probability reaches an

extremum when these arguments satisfy (3.17) or (3.18). For a realistic situation (neutrino

oscillations in the Earth), changes of Eν and Θν produce correlated changes of the argu-

ments and the absolute values of the individual amplitudes, and therefore in general the

condition (3.17) may not correspond to extrema precisely.

If the layers 1 and 2 have constant densities, then αi = ci+i cos 2θi si, βi = −i sin 2θi si

(see (2.23)), and the condition in eq. (3.17) reproduces the parametric resonance condi-

tion (3.13), i.e. X3 = 0. Under this condition the diagonal elements of S(2) are real;

therefore, in the case of constant-density layers the collinearity condition, the generalized

resonance condition and the parametric resonance condition coincide.

Denoting by χαi and χβi the arguments of the complex amplitudes αi and βi, respec-

tively, one can rewrite the collinearity condition as

χα1 + χα2 = χβ2 − χβ1 mod(π) . (3.19)

Consider now the case of three layers of in general varying densities. For the elements

of the evolution matrix S(3) one obtains

S
(3)
11 = α3 S

(2)
11 − β3 S

(2)∗
12 = α3 α2 α1 − α3 β2 β∗

1 − β3 α∗
2 β∗

1 − β3 β∗
2 α1 , (3.20)

S
(3)
12 = α3 S

(2)
12 + β3 S

(2)∗
11 = α3 α2 β1 + α3 β2 α∗

1 + β3 α∗
2 α∗

1 − β3 β∗
2 β1 . (3.21)
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In the case of neutrino oscillations in the Earth, the third layer is just the second mantle

layer, and its density profile is the reverse of that of the first layer. The evolution matrix

for the third layer is therefore the transpose of that for the first one [40], i.e. α3 = α1,

β3 = −β∗
1 , and the expression for S

(3)
12 can be written as

S
(3)
12 = α1α2β1 − α∗

1α
∗
2β

∗
1 + |α1|2β2 + |β1|2β∗

2 . (3.22)

Note that β2 is pure imaginary because the core density profile is symmetric. Therefore

the amplitude S
(3)
12 in eq. (3.22) is also pure imaginary, as it must be because the overall

density profile of the Earth is symmetric as well. It is easy to see that if the collinearity

condition for two layers (3.18) is satisfied, then not only the full amplitude S
(3)
12 , but also

each of the four terms on the right hand side of eq. (3.22) is pure imaginary. We therefore

conclude that if the collinearity condition is satisfied for two layers, then it is automatically

satisfied for three layers as well. It should be stressed that this is a consequence of the facts

that the density profile of the third layer is the reverse of that of the first layer and that the

second layer has a symmetric profile. Once again, the collinearity of all the contributions

to the transition amplitude potentially leads to the maximal total transition probability

for given transition probabilities in each layer.

For symmetric profiles in each of the two layers (and, in particular, for constant-

density layers) the generalized resonance condition and the collinearity condition essentially

coincide. For layers of non-symmetric densities, the two conditions differ. As can be seen

in the right panels of figure 4, both conditions describe the parametric enhancement ridges

in the oscillograms quite well. This is a consequence of the fact that the matter density

profiles felt by neutrinos traversing the Earth can be well approximated by path-dependent

constant density layers.

3.4 Extrema and saddle points

As has been discussed above, in the constant density case the positions of maxima of the

oscillation probability are determined by two conditions: the amplitude condition and the

phase condition.

For matter of non-constant density, the collinearity condition or the 2-layer generalized

resonance condition can be considered as the generalizations of the amplitude condition.

Taking into account that the density profile of the Earth’s core is symmetric (i.e. Reβ2 = 0),

one can rewrite the collinearity condition (3.18) as

Re(α1α2β1) = 0 . (3.23)

Compared with eq. (3.18), this condition has the practical advantage of not being trivially

satisfied for β2 = 0, which has no physically relevant implications. For trajectories crossing

only the mantle of the Earth, one has to set α2 = 1 in eq. (3.23) and the collinearity

condition reduces to Re(α1β1) = 0. Recall that in the limit of constant matter density

in the mantle this latter condition reduces to the condition of maximal mixing in matter

(barring φ1 = πk).

The phase condition φ = π/2 + πk of the constant-density case can be generalized

for varying density by expressing it in terms of the elements of the evolution matrix.
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According to (2.23), for one layer and the phase φ = π/2 + πk the product of amplitudes

αβ∗ = ± sin 2θ cos 2θ is real. Therefore, we can generalize the phase condition Im(αβ∗) = 0

taking instead of α and β the elements of the evolution matrix (amplitudes) for an arbitrary

profile:

Im(S11S
∗
12) = 0. (3.24)

Furthermore, since for symmetric density profiles S12 is pure imaginary, eq. (3.24) gives

Re S11 = 0 , (3.25)

i.e., the phase condition is fulfilled when S11 is pure imaginary.

In the graphical representation of neutrino oscillations based on their analogy with

spin precession in a magnetic field (see section 3.6), eq. (3.24) corresponds to the condition

that the neutrino “spin” vector is in the (sX , sZ) plane. As can be easily seen, this is

equivalent to the requirement that the transition probability be stationary with respect to

small variations of the total distance L traveled by neutrinos: dPA/dL = 0.

In the right panels of figure 4 we plot the collinearity (amplitude) condition, the gen-

eralized resonance condition and the phase condition for two different values of sin2 2θ13.

As follows from the figure, the simultaneous fulfillment of the phase and amplitude condi-

tions leads not only to absolute maxima of the transition probability (PA = 1), as in the

constant density case, but also to local maxima and saddle points. This is an effect of the

multi-layer medium. To figure out why this happens, we will use the explicit results for

three layers of constant densities. In this case a straightforward calculation gives [19]

S
(3)
11 = Z − iW3 , (3.26)

where

Z = 2c1Y − c2 , W3 = −(2s1Y cos 2θ1 + s2 cos 2θ2) , (3.27)

and

Y = c1c2 − s1s2 cos 2(θ1 − θ2) . (3.28)

with s1,2 and c1,2 defined after eq. (3.13). Both Z and W3 are real and therefore the phase

condition (3.25) gives Z = 0, i.e.:

2c1Y − c2 = 0 (phase condition). (3.29)

Also in this case

PA = 1 − W 2
3 . (3.30)

The collinearity condition (3.23) reduces to sin 2θ1s1X3 = 0 for constant density layers,

and since sin 2θ1 6= 0, we have

s1X3 = 0 (amplitude condition). (3.31)

Let us analyze possible realizations of these two conditions. According to (3.29), there

are two ways to satisfy the phase condition: (i) c1 6= 0, Y = c2/2c1 and (ii) c1 = 0,

c2 = 0. The amplitude condition (3.31) also has two realizations: (i) X3 = 0, (s1 6= 0),
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Figure 4: PA oscillograms and curves of phase and amplitude conditions for the PREM profile.

Left panels: the MSW resonance (dashed green), Re α1 = 0 (dashed black), Imβ1 = 0 (dashed

red) and Re α2 = 0 (dashed white). Right panels: collinearity condition (solid white), generalized

resonance condition (solid green) and phase condition (solid black).
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and (ii) s1 = 0, (X3 6= 0). As we will see below, different consistent combinations of these

realizations lead to absolute maxima, local maxima or saddle points of PA.

In the non-constant density case, we will use eq. (3.23) as the general amplitude con-

dition and eq. (3.25) as the general phase condition. Using eq. (2.23), we generalize the

other equalities discussed above as

c1 = 0 → Re α1 = 0, (3.32)

c2 = 0 → Re α2 = 0, (3.33)

s1 = 0 → Im β1 = 0. (3.34)

In the left panels of figure 4 we show the curves that correspond to different conditions.

From the constant-density limit it is clear why the curves Im β1 = 0 always coincide with

some of the amplitude condition curves: this follows from the fact that Im β1 = 0 is a

particular solution of the amplitude condition.

Let us now consider all consistent realizations of the amplitude and phase conditions,

using the terminology of the constant density approximation:

• X3 = 0 (s1 6= 0) (amplitude); Y = c2/2c1 (c1 6= 0) (phase). Plugging this expression

for the phase condition in (3.27), we obtain

W3 =
X3

c1
. (3.35)

Since X3 = 0 by the amplitude condition, we have W3 = 0 and, consequently, from

eq. (3.30) PA = 1. Thus, in the constant density layers approximation a simultaneous

fulfillment of the phase and collinearity conditions should lead to PA = 1, provided

that c1 6= 0 or ±1. This possibility is realized only on the ridge A, at a point where

the two curves that correspond to the generalized amplitude and phase conditions

cross. The other curves, depicting the conditions (3.32), (3.33) and (3.34), cannot

pass through this point. Notice that at this crossing point the oscillation half-phases

in the core and mantle differ from π/2 and π, and there is a nontrivial interplay

between the phases and mixing angles in the parametric resonance condition (3.13).

• c1 = 0, c2 = 0 (the latter equality follows from eq. (3.29)) (the phase condition).

In this case the amplitude condition, X3 = 0, is satisfied automatically. Using the

explicit formulas for Y (3.28), W3 (3.27) and eq. (3.30), we obtain Y = ± cos 2(θ1 −
2θ2) and

PA = sin2(4θ1 − 2θ2) . (3.36)

This case corresponds to the core and mantle half-phases equal to π/2 + πk. It

has a simple graphical representation, when it is enough to consider neutrino “spin”

vector in the (X, Z) plane (see section 3.6 below). This representation immediately

leads to the expression in eq. (3.36) for the transition probability [17], and shows

that this probability has a maximum for neutrino energies between those of the core

and mantle MSW resonances (where cos 2θ1 > 0 and cos 2θ2 < 0), provided that
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(θ2 − θ1) > π/4, and above the MSW resonances, where cos 2θ1,2 < 0. Below the

resonances and between the resonances for (θ2 − θ1) ≤ π/4, eq. (3.36) corresponds to

a saddle point of the transition probability. This agrees with the findings in [19].

As follows from figure 4, for Eν < 2.5 GeV (below the MSW resonance energies) the

intersections of the curves Reα1 = 0 and Reα2 = 0 (the analogues of c1 = c2 = 0 in

the case of non-constant densities within the layers) mark the positions of the saddle

points. Also in these points the curves that correspond to the general amplitude and

phase conditions intersect (since both conditions are fulfilled). At high energies the

condition c1 = 0 is not satisfied: the phase in the mantle is below π. Therefore, the

maxima of the transition probability are not achieved.

• s1 = 0 (c1 = ±1) (the amplitude condition), Y = 2c2/c1 (the phase condition). The

latter equality can be written as Y = ±2c2. On the other hand, from the explicit

expression for Y (eq. (3.28)) and for s1 = 0 one has Y = ±c2. Obviously, the two

expressions for Y are consistent only if c2 = 0. For s1 = c2 = 0 we find from (3.27)

W3 = ± cos 2θ2, and consequently,

PA = sin2 2θ2. (3.37)

This realization corresponds to the oscillation half-phase in the mantle equal to π and

therefore to the absence of the oscillation effect in the mantle (in the approximation

of constant-density matter). The whole oscillation effect is then due to the evolution

in the core. The oscillation half-phase in the core is a semi-integer of π (c2 = 0).

eq. (3.37) thus simply corresponds to the maximum oscillation probability for a given

mixing angle in matter θ2. At the intersection points of the curves depicting the

conditions s1 = 0 and c2 = 0 the probability takes values that correspond to the

resonance enhancement of the oscillations in the core. For non-constant density,

according to figure 4 (left panels), the intersections of the curves Imβ1 = 0 and

Reα2 = 0 (which are analogues of s1 = 0 and c2 = 0) correspond to local maxima.

These points lie at energies below 2.5 GeV. For higher energies, due to the large

oscillation lengths, the oscillation half-phase in the mantle is smaller than π and the

condition s1 = 0 is not fulfilled.

Notice that along the lines Im β1 = 0 (or φ1 ≈ πk) the oscillation effects correspond to the

resonance enhancement in the core, whereas the saddle points are situated along the lines

Re α1 = 0 (or φ1 ≈ π/2 + πk).

3.5 Absolute minima and maxima of the transition probability

As follows from figure 4, the absolute minima PA = 0 never appear as isolated points in

the oscillograms, but always form continuous lines (valleys of zero probability). Such a

property (degeneracy of minima) is lifted for non-zero ∆m2
21 [39]. This is unlike for the

absolute maxima, such as the MSW mantle peak or the parametric resonance peak in the

core region, where instead the value PA = 1 is reached only at a few isolated points. This
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feature is a consequence of the symmetry of the matter density profile of the Earth, and

can be readily understood in the following way.

The condition for the absolute minimum, PA = 0, or S12 = 0, can be written as

ReS12(L, 0) = 0 , Im S12(L, 0) = 0 , (3.38)

and for a generic profile the absolute minima are found as the points where the curves

corresponding to the two conditions in (3.38) intersect. However, due to the symmetry of

the Earth’s matter density profile, the condition ReS12(L) = 0 is satisfied automatically

for all values of Eν and Θν . Therefore the zeros of PA simply coincide with the contour

curves Im S12(L) = 0.

The absolute maxima, PA ≡ |S12|2 = 1, are realized when |S11|2 = 0, or

ReS11(L, 0) = 0 , Im S11(L, 0) = 0 . (3.39)

Since in general ReS11 and Im S11 are independent and non-trivial functions of Eν and Θν ,

the contours that correspond to equalities in (3.39) do not coincide. The absolute maxima

occur only at the intersections of the these contours, which explains why such maxima are

isolated points.

Another interesting feature of the transition probability PA is that its dependence on

the distance x along a given trajectory exhibits peculiar symmetry properties for trajecto-

ries, corresponding to the absolute minima and maxima of PA(L). Specifically,

• For trajectories, corresponding to the absolute minima (PA(L) = 0),

PA(L − x) = PA(x) . (3.40)

That is, PA is symmetric with respect to the midpoint of the trajectory x = L/2:

PA(L/2 + z) = PA(L/2 − z), z ≤ L/2.

• For trajectories, corresponding to the absolute maxima (PA(L) = 1),

PA(L − x) = 1 − PA(x) . (3.41)

This implies that in the middle of the trajectory PA(L/2) = 1/2 and the function P ′ ≡
PA−1/2 is antisymmetric with respect to the midpoint: P ′(L/2+z) = −P ′(L/2−z).

The proof is straightforward. Due to the symmetry of the density profile with respect to

the midpoint of the neutrino trajectory, we have for any point x on the trajectory

S(L − x, 0) = ST (L, x), (3.42)

which is essentially a consequence of T-invariance of 2-flavour neutrino oscillations [40].

Then, from the definition of the evolution matrix one finds S(L, 0) = S(L, x)S(x, 0),

which can be rewritten (using the unitarity of S) as S(L, x) = S(L, 0)S(x, 0)† . Plugging

the latter relation into (3.42), we obtain

S(L − x, 0) = S∗(x, 0)S(L, 0) . (3.43)
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For the absolute minima, PA = 0, the evolution matrix S(L, 0) should be diagonal,

and therefore we obtain from eq. (3.43)

S(L − x, 0) = S∗(x, 0)

(

eiφL 0

0 e−iφL

)

. (3.44)

Consequently,

PA(L − x) =
∣

∣S∗
12(x, 0)e−iφL

∣

∣

2
= PA(x) . (3.45)

For the absolute maxima, PA(L) = 1, the matrix S(L, 0) should be off-diagonal (see

eq. (3.39)) with pure imaginary elements due to the symmetry of the matter density profile.

Therefore, using (3.43), one finds

S(L − x, 0) = S∗(x, 0)

(

0 −i

−i 0

)

, (3.46)

and consequently,

PA(L − x) =
∣

∣S∗
11(x, 0)(−i)

∣

∣

2
= 1 − PA(x) . (3.47)

Notice that, according to figure 4, there are no local minima with PA 6= 0.

3.6 Interpretation of the oscillation pattern for core crossing trajectories

The analysis presented in the previous subsections allows one to give a complete physics

interpretation of neutrino oscillations in the Earth. Essentially the whole oscillatory pat-

tern that includes the ridges, absolute and local maxima, saddle points and zeros, can be

understood on the basis of different realizations of the amplitude and phase conditions. We

illustrate neutrino oscillations inside the Earth for core crossing trajectories by figures 5

and 6, and the corresponding graphical representation of the oscillations is given in fig-

ures 7b–7f. For comparison, in figure 7a we also show the graphical representation of the

oscillations for a trajectory crossing only the mantle of the Earth.

Core ridge. The core resonance ridge is located at Eν ∼ (2.5 − 2.8) GeV. It is of the

MSW resonance nature, but is situated below the MSW resonance line in the core: Eν <

ER(Θν), the reason being that the values of the oscillation half-phase are different from

π/2. The ridge does not coincides with any curve corresponding to the phase or amplitude

condition. At one point on the ridge there is an intersection of the curves Imβ1 = 0

(the mantle half-phase φ1 = π) and the collinearity condition, as well as of the Reα2 =

0 curve, corresponding to the core half-phase φ2 = π/2 (see figure 4). This crossing

point corresponds to the local maximum with zero mantle effect and maximal oscillation

amplitude in the core.

As follows from figures 5 and 6, the main contribution to the oscillation probability

comes from the MSW-enhanced oscillations in the core, though the mantle contribution is

not negligible. The detailed picture depends on the value of sin2 2θ13.

At Θν = 27◦ (point Z3) the phase reaches φ2 = π/2 and furthermore φ1 = π. This cor-

responds to pure core effect. Notice that with increase of Θν the average density decreases
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Figure 5: Dependence of the probability PA (solid blue), half-phase φ (dashed red) and the Earth

density (gray shade) on the position along the neutrino trajectory, for sin2 2θ13 = 0.05 and different

values of Θν and Eν . The corresponding points of the oscillogram, together with the curves of the

amplitude (collinearity) condition, are shown in the upper-left panel.
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Figure 6: Same as in figure 5, but for sin2 2θ13 = 0.125.

and the depth of oscillations becomes smaller. In figure 7b we show the graphical repre-

sentation of evolution with parameters from core-ridge (point Z3). We show the precession

cones in the mantle and in the core in the points close to border between the mantle and
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core. Shift of the evolution trajectory from the cone surfaces is due to density change and

violation of adiabaticity.

For sin2 2θ13 = 0.05 another intersection of lines of the amplitude condition and the

phase conditions Reα2 = 0 (core half-phase π/2) occurs at Eν = 3.3 GeV and Θν = 10◦.

Evolution for this configuration is shown in figure 5 point A1. Notice that this point is in

the ridge A. Here transitions in both mantle layers are non-zero but have opposite sign

and cancel each other. So, the whole effect is due to MSW resonance enhancement in core.

For large 1-3 mixing, e.g. sin2 2θ13 = 0.125, there is substantial interplay of the core

and mantle oscillation effects (see figure 6). For Θν ∼ 0, we find φ1 ∼ φ2 < π; contribu-

tions from two mantle layers interfere constructively and the total mantle contribution is

comparable with the core contribution (the later is resonantly enhanced).

The parametric ridges differ by the oscillation phase acquired in the core, φ2.

Ridge A. The phase in the core φ2 . π. This ridge lies in between the core resonance

(at Θν ∼ 0◦) and the mantle resonance regions. At the border between the core and the

mantle domains of the oscillogram, Θν = 33.1◦, this ridge merges with the MSW resonance

peak in the mantle.

As we mentioned above, for Θν < 10◦ and Eν ∼ 3GeV the phase in the core φ2 < π/2,

the mantle effect is small and two mantle layer contributions cancel each other. So, here

we deal with resonance enhancement of oscillations in core. With increase of Eν and Θν

along the ridge both phases φ1 and φ2 decrease. The core and two mantle contributions

add constructively leading to large probability. For example, for the point A3 (Fig 5)

π1 ≈ π2 ≈ π/3 and maximal probability build up by three comparable contributions. The

graphical representation of this evolution is shown figure 7c. For the core part we show in

some panels two precession cones, corresponding to the beginning and the end of the core

section. The difference of these two cones reflects the effects of the non-constant density

distribution.

For large 1-3 mixing sin2 2θ13 ≥ 0.075, the region of maximal transition shifts to the

mantle domain. Furthermore, the saddle point appear between the MSW resonance and

the parametric resonance regions. In the saddle point A1 (figure 6) the phases in the core

and the mantle φ1 ≈ φ2 ≈ π/2, correspond to maximal oscillatory factors. However the

contributions from the two mantle layers have opposite sign and cancel each other. The

corresponding graphical representation is shown in figure 7f.

With increase of Θν the phases φ1 and φ2 decrease and cancellation becomes weaker.

In the ridge A for small 1-3 mixing the lines of the phase and amplitude conditions

almost coincide that ensures stability of enhancement in large area.

Ridge B. This ridge is situated at Eν ≥ 5GeV. For the smallest energies in the ridge

and Θν ∼ 0 the half-phase in the core φ2 ∼ (1.2 − 1.3)π, so that oscillations in the core

give substantial contribution effect (see figures 5 and 6). In the range Eν = (5−6) GeV the

parametric enhancement of oscillations with significant interplay of the core and mantle

oscillation effects is realized. In figure 7d we show graphical representation for the point

B2 (figure 6).
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Figure 7: Graphical representation of neutrino evolution in the Earth. Shown are the trajectories

of the neutrino vector ~s in the (X, Y, Z) space (solid lines), for different values of θ13 and different

points in the oscillograms. The different panels correspond to a) the MSW peak in mantle; b) the

point Z2 in figure 6; c) the point A3 in figure 5; d) the point B2 in figure 6; e) the point C1 in

figure 6; f) near saddle point A1 in figure 6. We also show the precession cones (dotted lines) in the

mantle and core points close to the border between the mantle and core. Sections 1-2, 2-3 and 3-4

indicate evolution in the first mantle layer, the core and the second mantle layer correspondingly.

Ridge C. The ridge is located at Eν > 11 GeV in the matter dominated region where

mixing and consequently oscillation depth are suppressed. For Θν ∼ 0 the half-phase in the

core equals φ2 ∼ 1.8π. Here main contribution to probability is due to oscillations in mantle
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whereas the core gives small (negative) contribution. We show graphical representation of

evolution that corresponds to the point C1 in figure 7e.

Notice that qualitative features of the high energy part of ridge B and ridge C do

not depend on θ13 since both are in the θ13 factorization region where PA ∝ sin2 2θ13 (see

section 5.1).

4. Approximate analytic description of neutrino oscillations in the Earth

In this section we develop an approximate analytic approach to 2-flavor neutrino oscillations

in the Earth. To this end, we employ a perturbation theory in the deviation of the density

profile from that represented by layers of constant densities. This approach has been first

developed in ref. [32] for the description of the solar neutrino oscillations in the earth. Here

we apply it to the study of atmospheric neutrinos. The approximation turns out to work

extremely well in spite of the fact that the variations of the neutrino potential inside the

Earth layers can be large |∆V |/V̄ ∼ 0.3. The high accuracy of our approach is related to

the symmetry of the density profile of the Earth.

4.1 Perturbation theory in ∆V

Let us first consider the case of one layer of relatively weakly varying density and represent

the matter-induced potential of neutrinos V (x) along a given trajectory as the sum of a

constant term V̄ and a perturbation ∆V (x):

V (x) = V̄ + ∆V (x) . (4.1)

Correspondingly, the Hamiltonian of the system can be written as the sum of two terms:

H(x) = H̄ + ∆H(x) , (4.2)

where

H̄ ≡ ω̄

(

− cos 2θ̄ sin 2θ̄

sin 2θ̄ cos 2θ̄

)

, ∆H ≡ ∆V (x)

2

(

1 0

0 −1

)

. (4.3)

Here θ̄ = θm(V̄ ) is the mixing angle in matter and ω̄ = ω(V̄ ) is half of the energy splitting

(half-frequency) in matter, both with the average potential V̄ . Throughout this section

we will denote by S̄(x) the evolution matrix of the system for the constant density case

H(x) = H̄. The explicit expression for S̄(x) is given by eq. (2.21) with θm = θ̄.

For matter of varying density, we seek the solution of the evolution equation (2.3) in

the form

S(x) = S̄(x) + ∆S(x), ∆S(x) = −i S̄(x)K1(x) , (4.4)

where K1(x) satisfies |K1(x)ab| ≪ 1. Inserting eq. (4.4) into eq. (2.3), we find the following

equation for K1(x) to the first order in ∆H(x) and K1(x):

dK1(x)

dx
= S̄†(x)∆H(x) S̄(x) =

∆V (x)

2

{

− cos 2θ̄

(

− cos 2θ̄ sin 2θ̄

sin 2θ̄ cos 2θ̄

)

+ sin 2θ̄

(

sin 2θ̄ cos 2θ̄

cos 2θ̄ − sin 2θ̄

)

cos 2φ(x) + sin 2θ̄

(

0 −i

i 0

)

sin 2φ(x)

}

. (4.5)
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The first term does not contribute to S ≡ S(L) since 〈∆V 〉 ≡
∫

∆V (x)dx = 0, and eq. (4.5)

can be immediately integrated:

K1(L) =
1

2
sin 2θ̄

{(

sin 2θ̄ cos 2θ̄

cos 2θ̄ − sin 2θ̄

)

∫ L

0
∆V (x) cos 2φ(x) dx

+

(

0 −i

i 0

)

∫ L

0
∆V (x) sin 2φ(x) dx

}

. (4.6)

It is convenient to introduce the new variable z = x − L/2, which measures the distance

from the midpoint of the neutrino trajectory. Then from (4.6) we obtain

∆S ≡ ∆S(L) = −i sin 2θ̄

{(

sin 2θ̄ cos 2θ̄

cos 2θ̄ − sin 2θ̄

)

∆I +

(

0 −i

i 0

)

∆J

}

, (4.7)

where

∆I ≡ 1

2

∫ L/2

−L/2
∆V (z) cos(2ω̄z) dz , ∆J ≡ 1

2

∫ L/2

−L/2
∆V (z) sin(2ω̄z) dz . (4.8)

In these integrals, ∆V (z) ≡ ∆V (x(z)) and x(z) = z − L/2. Obviously, ∆J vanishes

if the perturbation ∆V (z) is symmetric with respect to the midpoint of the trajectory.

Analogously, ∆I vanishes if ∆V (z) is antisymmetric. The expression for S defined in

eq. (4.4) with ∆S given in eqs. (4.7) and (4.8) is equivalent to eqs. (13–16) obtained in

ref. [32] in the context of solar neutrino oscillations.

Let us now consider the issue of the unitarity of the obtained evolution matrix that

can be important for numerical calculations. Since S̄ ≡ S̄(L) is unitary, we have

S†S = I + ∆S†S̄ + S̄†∆S + ∆S†∆S. (4.9)

The second and third terms on the r.h.s. of this equality cancel each other thus ensuring the

unitarity of S at the first order in ∆S. In order to prove this it is convenient to parametrize

the evolution matrix S̄ and the perturbation ∆S (4.7) as in eq. (3.11):

Y = cos φ , X = sin φ
(

sin 2θ̄, 0, − cos 2θ̄
)

, (4.10)

∆Y = 0, ∆X = ε
(

cos 2θ̄ cos ξ, sin ξ, sin 2θ̄ cos ξ
)

, (4.11)

where φ ≡ φ(L) and we have introduced

ε = sin 2θ̄
√

∆I2 + ∆J2 , ξ = arg(∆I + i∆J) . (4.12)

It is easy to see that ∆S†S̄ + S̄†∆S = Y ∆Y + X · ∆X = 0. The last term in eq. (4.9),

∆S†∆S, violates the unitarity condition, however it is of order ε2 and therefore it does

not break consistency of our approximation. However, for practical purposes it would be

useful to have an expression for S which is exactly unitary regardless of the size of the
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perturbation, even if for large perturbations the formalism is no longer accurate. In order

to do this, we first rewrite eq. (4.7) as follows:

∆S = εS′ , S′ = −i

{(

sin 2θ̄ cos 2θ̄

cos 2θ̄ − sin 2θ̄

)

cos ξ +

(

0 −i

i 0

)

sin ξ

}

, (4.13)

and then we perform the following replacement in the expression for S:

S = S̄ + εS′ −→ S = cos ε S̄ + sin εS′ . (4.14)

Note that both S′ and S̄ are unitary matrices, and that due to their specific form the

combination on the right-hand-side of eq. (4.14) is exactly unitary. In our computations

we use the exactly unitary matrix (4.14).

4.2 Application: mantle-only crossing trajectories

We shall now use the formalism of the previous subsection to derive an explicit formula for

the transition probability for mantle-only crossing neutrino trajectories. Since the density

profile is symmetric with respect to the midpoint of the trajectory, the term ∆J is absent.

From eqs. (2.21), (4.7) and (4.14) we immediately get

PA =
[

cos ε sin 2θ̄ sinφ + sin ε cos 2θ̄
]2 ≈ sin2 2θ̄

[

sin φ + ∆I cos 2θ̄
]2

, (4.15)

where ε ≡ sin 2θ̄ ∆I and φ ≡ φ(L) = ω̄L. Here the first term in the square brackets

describes oscillations in constant density matter with average potential V̄1. In order to

obtain an explicit formula for ∆I, we approximate the matter density profile along the

neutrino trajectory by a parabola:

∆V (z) ≈ V ′′
1

[

( z

L

)2
− 1

12

]

. (4.16)

The average value V̄1 and the coefficient V ′′
1 depend only on the nadir angle Θν, and are

shown in figure 8. Inserting the expression for ∆V (z) into eq. (4.8) and integrating by

parts, we obtain

∆I =
V ′′

1 L

12
f(φ), f(φ) ≡ 3φ cos φ + (φ2 − 3) sin φ

φ3
. (4.17)

The function f(φ) has the following features: for φ → 0 (outer trajectories), one has

f(φ) → −φ2/15; for φ = π/2 which corresponds to the maximum transition probability for

a given mixing angle in matter, f(φ) ≈ −0.13; the function |f(φ)| reaches its maximum,

f(φ) ≈ −0.31, at φ ≃ 1.07π. The function f(φ) changes its sign at φ ∼ 1.8π, and for large

φ it behaves as f(φ) ∼ sin φ/φ.

From eqs. (4.15) and (4.17) it follows that:

• in the zeroth approximation, the transition probability is given by the standard os-

cillation formula for matter of constant density, with the oscillation amplitude deter-

mined by the mixing angle θ̄ = θm(V̄1) and the phase φ = ω(V̄1)L;
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1
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1
, −V ′′

2
) (blue) on the nadir angle Θν .

• the lowest-order correction to PA vanishes at the MSW resonance, i.e. along the curve

ER(Θν). The correction changes its sign at the resonance, being positive below it

(Eν < ER(Θν)) and negative above it;

• the largest corrections correspond to the trajectories with Θν ∼ 37◦ (i.e. passing close

to the core) and the phase φ ∼ π. Indeed, f(φ), |V ′′
1 | and L are all maximal for the

deepest mantle trajectories

4.3 Application: core-crossing trajectories

For trajectories crossing the Earth’s core, the evolution matrix can be factorized as

S = ST
1 S2 S1 , (4.18)

where the subscripts ‘1’ and ‘2’ refer to the mantle (one layer) and core. S1 and S2

can be calculated using the formalism described in the previous sections. Since the core

density profile is symmetric, the corresponding integral ∆J2 vanishes, whereas ∆I2 can be

calculated in full analogy with the derivation of ∆I in section 4.2. In particular, we can

approximate the core density profile by a parabola and obtain for ∆I2 an expression which

is completely analogous to that in eq. (4.17): ∆I2 = ∆I(φ2, V
′′
2 L2). Here φ2 ≡ ω̄2L2 is the

phase acquired in the core layer. The expression for S2 is therefore

S2 = cos ε2 S̄2 − i sin ε2

(

sin 2θ̄2 cos 2θ̄2

cos 2θ̄2 − sin 2θ̄2

)

, ε2 = sin 2θ̄2 ∆I2 . (4.19)
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Figure 9: Contour plot of the probability PA for the PREM density profile (colored regions;

grayscale on black-and-white printouts) and for our analytic approximation including first-order

corrections (black curves).

For the neutrino trajectories that cross the Earth’s core, it is convenient to approximate

the density profile within each mantle layer by a linear function of the coordinate:

V1(z) = V̄1 + ∆V1(z), ∆V1(z) ≈ V ′
1

z

L1
, (4.20)

where L1 is the length of one mantle layer. The advantage of this parametrization is that

∆V1(z) is an antisymmetric function of z, and therefore ∆I1 vanishes. For ∆J1 we obtain

from eq. (4.8):

∆J1 = V ′
1L1

sin φ1 − φ1 cos φ1

4φ2
1

(4.21)

where φ1 ≡ ω̄1L1 is the phase acquired in each mantle layer. Then S1 is given by

S1 = cos ε1 S̄1 + sin ε1

(

0 −1

1 0

)

, ε1 = sin 2θ̄1 ∆J1 . (4.22)

At first-order in ε1:

S1 ≈
(

cos φ1 + i cos 2θ̄1 sinφ1 sin 2θ̄1 (−i sin φ1 − ∆J1)

sin 2θ̄1 (−i sin φ1 + ∆J1) cos φ1 − i cos 2θ̄1 sin φ1

)

. (4.23)
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In figure 8 we show the dependence of (V̄1, V ′
1) and (V̄2, V ′′

2 ) on the nadir angle Θν .

With these functions, one can find from eqs. (4.17) and eqs. (4.21) the quantities ∆I2 and

∆J1 and then from eqs. (4.19) and (4.22) the evolution matrices S1 and S2. Substituting

the results into eq. (4.18), one obtains the evolution matrix for the whole trajectory.

In the limit |∆J1| ≪ | sin φ1| eq. (4.23) can be rewritten as

S1 = D1 S̄1 D∗
1 , D1 ≡

(

e−iτ1/2 0

0 e+iτ1/2

)

, τ1 = arcsin

(

∆J1

sin φ1

)

, (4.24)

and since ∆J1 is real, D1 is a pure phase matrix. In this limit the total evolution matrix

eq. (4.18) takes the form

S = S̄1 D1 S2 D1 S̄1 (4.25)

where we have omitted the two outer matrices D∗
1 are irrelevant for the calculation of

PA = |S12|2. The two matrices D1 in eq. (4.25) can be combined with S2 to construct an

effective core matrix, which takes into account all the first-order corrections (both in the

core and in the mantle):

S ≡ S̄1 S′
2 S̄1 , S′

2 ≡ D1 S2 D1 . (4.26)

An advantage of this approach is that both S̄1 and S′
2 are symmetric matrices, so that all

the results derived previously in the constant-density approximation can be improved to

take into account the first-order corrections by simply replacing S̄2 → S′
2. The asymmetry

of the mantle profile is effectively resolved.

In figure 9 we compare the PA oscillograms obtained by numerical calculations for

the PREM matter profile with those obtained using eqs. (4.18), (4.19) and (4.22). As can

be seen from this figure the degree of accuracy increases drastically once the corrections

described here are included.

An advantage of the described approximate analytic approach is that the coefficients

V̄ and V ′′
1 depend solely on the nadir angle of the neutrino trajectory Θν . In particular,

they do not depend on neutrino energy and on the values of ∆m2 and θ.

5. Dependence of oscillograms on 1-3 mixing, density profile and flavor

channel

5.1 Dependence of oscillograms on 1-3 mixing

As can be seen in figure 1, with increasing sin2 2θ13 the oscillation probability increases

everywhere in the (Eν , Θν) plane. The evolution of the oscillation pattern appears as a

“flow” of higher probability along nearly fixed curves towards larger values of Θν : The flow

is along the curves of the phase condition (3.24) for the mantle trajectories, and along the

curves of the collinearity condition for the core-crossing trajectories. These lines of flow

move only weakly with θ13.

The region of sizable oscillation probability, PA ≥ 1/2, appears first for sin2 2θ13 ≈
0.009, at Θν = 0◦ and Eν = 2.8 GeV. It is located on the parametric ridge A. This large
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probability is due to the parametric enhancement of the oscillations. The nature of the

increase of the oscillation probability with increasing θ13 is different in different regions

of the parameter space. Analytic expressions for various structures in the oscillograms,

derived in section 2.3, allow one to understand this evolution. Two features determine the

dependence of the oscillograms on the 1-3 mixing:

• factorization of the θ13 dependent factors in the probability, and

• dependence of the amplitude and phase conditions on 1-3 mixing.

Let us consider first the regions outside the resonances: Eν > ER + ∆Emax
R , and

Eν < ER−∆Emax
R . Here ∆Emax

R = ER tan 2θmax
13 and tan 2θmax

13 ∼ (0.1−0.2) corresponds to

the maximal allowed values of 1-3 mixing. In practice, for the mantle-crossing trajectories

these are the regions with Eν < 5 GeV and Eν > 8 GeV. In these regions, the mixing

parameter in matter can be approximated by

sin2 2θm ≈ sin2 2θ13
∣

∣1 − 2V Eν

∆m2

∣

∣

2 . (5.1)

Moreover, the half-phase

φ ≈ ∆m2

4Eν

∣

∣

∣

∣

1 − 2V Eν

∆m2

∣

∣

∣

∣

L (5.2)

does not depend on 1-3 mixing. So, for the mantle domain trajectories the lines of constant

phase that determine the lines of flow do not depend on 1-3 mixing. As follows from (5.1)

and (5.2), the oscillation probability for one layer (mantle) factorizes:

PA ≈ sin2 2θ13 sin2 φ
1

|1 − 2V Eν/∆m2|2
. (5.3)

Therefore, the probability increases uniformly in the whole this area and the lines of zero

and maximum transition probability do not move. For the core crossing trajectories similar

analysis holds for Eν < 2 GeV.

Let us first consider the parametric resonance condition (3.13) that determines ap-

proximately the lines of “flow”. Beyond the MSW resonance regions, the phases φi, and

therefore ci and si (i = 1, 2), do not depend on the 1-3 mixing. The mixing angles in

matter enter the condition through cos 2θi. Outside the resonance regions θi ≈ θ13 ≪ 1 or

θi ≈ π/2 and therefore cos 2θi ≈ ±1 weakly depend on 1-3 mixing. So, the condition (and

therefore the lines of flow) shifts only weakly with change of θ13.

Let us now consider the resonance regions (2 < Eν < 12) GeV. Here dependence of the

transition probability on sin2 2θ13 is non-linear. Not only the depth of the oscillations, but

also the oscillation length in matter in each layer depends on sin2 2θ13 substantially, and

the latter influences the interference effects. As a result, the transition probability changes

with θ13 differently in different regions, and in addition the “lines of flow” shift.

One can make the following observations.
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• The MSW resonance peak in the mantle is determined by the condition (3.1). With

increasing sin2 2θ13, the peak shifts to larger values of Θν and to slightly larger ener-

gies. This can be readily understood. Indeed, the oscillation length at the resonance

decreases with increasing θ13 as lm = lν/ sin 2θ13 and therefore the condition φ1 = π/2

is satisfied for shorter (more external) trajectories. For these trajectories the average

density becomes smaller, so that the resonance energy increases: ER ∝ 1/V̄ . The

width of the resonance peak at half height increases as tan 2θ13 both in neutrino

energy and in Θν variables (see the discussion below eq. (3.1)). Using the resonance

condition (3.1), we obtain from (3.4)

tan 2θ13 =
π

2V̄ (Θν)R cos Θν
≡ π

d
, (5.4)

where d is the column density that corresponds to maximum of the transition prob-

ability. Eq. (5.4) gives an immediate relation between θ13 and the nadir angle of the

neutrino trajectory on which the absolute maximum of the transition probability is

realized. This can, in principle, be used for measuring θ13: the method would simply

consist in the determination of Θν of the mantle-only crossing trajectory correspond-

ing to the absolute maximum of the conversion probability PA = 1 − Pee.

• Core ridge slightly shifts with increase of θ13 to larger energies, especially at Θν ≈ 0.

• For ridge A, the region of sizable transition probability and the position of the max-

imum also move towards smaller | cos Θν |. With increasing θ13 the oscillation length

decreases, especially in the resonance region. Therefore, the same phases in the core

and mantle can be obtained for shorter trajectories in the core and therefore for larger

Θν .

• Ridge B evolves weaker with θ13: the energy corresponding to the maximum of

the transition probability stays rather close to that of the mantle MSW resonance,

Eν ≈ (5 − 6) GeV. At higher energies the ridge is in the factorization region. With

increase of θ13 at Θν ≈ 0 the ridge shifts to smaller Eν .

• The situation for ridge C is similar to ridge B.

5.2 Dependence on the Earth’s density profile

In different parts of the (Eν , Θν) plane the oscillation probabilities have different sensitivity

to the modifications of matter density profile. The sensitivity is very weak (independently

of the form of perturbation) in the following parts:

• Θν > 84◦: here the length of the trajectory, and therefore the oscillation phase, are

small, so that effect of “vacuum mimicking” [1, 5] takes place. To a good approxima-

tion matter does not affect the oscillation probabilities, irrespectively of whether or

not the matter-induced potential V is small compared to the kinetic energy difference

∆m2
31/2Eν .
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Figure 10: PA oscillograms for the PREM density profile (colored regions) and for a 20% variations

of the core/mantle density ratio. The total mass of the Earth is kept fixed.

• Eν < 2GeV: here one has V ≪ ∆m2
31/2Eν , and so matter effects on the oscillations

driven by 1-3 mixing and splitting are small for all values of Θν .

The region of high sensitivity to the density profile of the Earth is bounded by Eν >

(3 − 4) GeV and Θν < 66◦. This is the region of energies close to and above the resonance

energies (matter dominance) and of sufficiently long trajectories. The latter condition

ensures an accumulation of the matter effects over long distances and therefore a sensitivity

to large scale structures of the density profile. For the core-crossing trajectories the border

of the sensitivity region is lower: Eν ≃ 2 GeV. Changes of the oscillograms in this region

depend on the specific form of the modification of the matter density distribution.

For illustration, we consider here the effects of three different modifications of the

Earth density profile: (1) replacing PREM profile by constant-density mantle and core

layers, (2) modification of the core/mantle density ratio, and (3) changes of the position of

the border between the mantle and the core.

(i) In figure 2 we show the results of the fixed constant-density layers approximation,

characterized by the constant potentials V1 and V2 in the mantle and core. This

profile can be considered as an extreme case of flattening of the mantle and core

density distributions. For the mantle-only crossing trajectories there are two lines
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Figure 11: PA oscillograms for the PREM density profile (colored regions) and for a 20% variations

of the core radius. The total mass of the Earth is kept fixed.

in the oscillograms where the oscillation probabilities for the two profiles are equal:

(i) Θν ≈ 53◦, which corresponds to the trajectory with V̄PREM = V1, and (ii) the

resonance energy curve Eν ≃ ER(Θν). Indeed, along the resonance curve the first-

order correction to PA due to the deviation of the density profile from the averaged

constant one disappears (see the discussion in section 4.2).

For Θν < 53◦ the oscillation pattern for the fixed constant-density profile is shifted

to higher energies compared to that for the PREM profile. Furthermore, for Eν >

ER(Θν) one has Pconst > PPREM, whereas for lower energies, Eν < ER(Θν), Pconst <

PPREM, which essentially reflects the shift of the resonance peak when profile is

changed. The shift of contours in the energy scale increases as Θν decreases and

reaches maximum for the deepest mantle trajectories.

For core crossing trajectories the size of changes is similar.

(ii) Figure 10 illustrates the effects of the increase (decrease) of the core density: V2(x) →
kV2(x), where k = const. The shapes of the density profiles in the mantle and core

are taken according to the PREM profile. The total mass of the Earth is unchanged

and therefore the density of the mantle should be reduced (increased) correspond-

ingly: ∆V1/V1 = −[(R/Rc)
3 − 1]−1(V̄2/V̄1)∆V2/V2 ≈ −0.3∆V2/V2. The effects of the
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increase and decrease of the core potential on the oscillogram are opposite and for

definiteness we will consider the case of an increase of V2. The strongest effect is for

Θν < 60◦ and above the resonance.

For core-crossing trajectories, an increase of the core density leads to a shift of the

oscillatory pattern to larger Θν and higher energies, and also results in an increase

of probability. These features can be understood using the parametric resonance

condition.

(iii) Figure 11 illustrates the effects of increase (decrease) of the core radius. Again, the

requirement of keeping the total mass of the Earth fixed imposes a rescaling of the

overall core and mantle densities. As in the previous case, this rescaling is what

induces the most important effects on the oscillogram.

The sensitivity of the oscillation probabilities to the variations of the matter density

distribution in the Earth can in principle be used for studying the Earth interior

with neutrinos, i.e. to perform an oscillation tomography of the Earth [39]. Using

the features described above one can work out the criteria for the selection of events

that are sensitive to a given type of variations of the profile.

5.3 Probabilities for other oscillation channels

In figures 12 and 13 we show the oscillograms for the other channels. As follows from the

discussion in section 2.2, in the approximation of zero 1-2 splitting (∆m2
21 = 0) all the

probabilities that involve νe depend on the single probability PA. This is related to the

fact that νe is unchanged upon going from the flavor basis to the propagation one.

The probability Pee = 1−PA is just complementary to PA with all the features inverted.

Peµ is just PA scaled by the factor s2
23 (see the middle panel in figure 12). The maximal

value of this transition probability is therefore s2
23. Similarly, Peτ is PA scaled by the factor

c2
23.

The probabilities of transitions that do not involve νe have more complicated structure

since now both the initial and the final states do not belong to the propagation basis and

therefore some additional interference occurs. The survival probability Pµµ in eq. (2.16)

can be written as

Pµµ = Pvac − s4
23PA + 2s2

23c
2
23 (Re A33 − cos 2φvac) , (5.5)

where Pvac = 1− sin2 2θ23 sin2 φvac is the usual 2-flavor vacuum oscillation probability and

φvac ≡ ∆m2
31L/4Eν is the vacuum oscillation phase. Pvac describes the oscillation effect

in the absence on the 1-3 mixing. The other two terms in (5.5) describe the effects of the

1-3 mixing. We can use the approximate results of section 4 to estimate ReA33. Recall

that in section 4 we used a symmetric Hamiltonian for 2ν system, which differs from the

one introduced in section 2.1 by a term proportional to the unit matrix (2.19). The term

Re A33 essentially reflects evolution of the 1-3 system with respect to the state ν̃2 and so

the 3ν form of the Hamiltonian should be restored. According to eq. (2.19) the relation
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Figure 12: Pee, Peµ and Pµµ oscillograms, for neutrinos (left panels) and antineutrinos (right

panels), sin2 2θ13 = 0.05, sin2 2θ23 = 1 and ∆m2

21
= 0.
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Figure 13: The same as in figure 12 but for sin2 2θ13 = 0.125.

between the corresponding evolution matrices (up to the removed decoupled state) is

S̃ = e−iψS, ψ ≡
∫ L

0

(

∆m2
31

4Eν
+

V

2

)

dx . (5.6)
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Then

A33 = e−iψ S22 , (5.7)

where S22 is the 22 element of the matrix (2.21) with the correction given in (4.7).

Let us consider the mantle trajectories. Then from (5.7) we get explicitly

ReA33 = cos(φ + ψ) + 2 sin2 θ̄13 sin ψ[sin φ + 2cos2 θ̄13∆I] , (5.8)

where the phase φ and the correction integral ∆I are defined in (2.21) and (4.8), respec-

tively, and the angle θ̄13 is the 1-3 mixing angle in matter calculated at the average value

of the matter density. Then the survival probability Pµµ for the mantle-only crossing

trajectory can be written as

Pµµ = 1 − sin2 2θ23 sin2

(

φ + ψ

2

)

− s4
23PA

+
1

2
sin2 2θ23 sinψ

(

2 sin2 θ̄13 sin φ + sin2 2θ̄13 ∆I
)

. (5.9)

Notice that the first two terms here correspond to 2-flavor vacuum probability with

the modified phase. The probability can be rewritten as

Pµµ = Pvac + ∆P (5.10)

with

∆P = −s4
23PA − 2s2

23c
2
23

[

cos 2φvac − cos(φ + ψ)

− 2 sin2 θ̄13 sin ψ sin φ − sin2 2θ̄13 sin ψ ∆I
]

. (5.11)

In the limit s13 → 0 one has

φ ≈
∫ L

0

(

∆m2

4Eν
− V (x)

2

)

dx (5.12)

which, together with (5.6), implies φ + ψ = 2φvac.

These formulas can be used for the analysis of numerical results shown in figures 12

and 13. The first correction term in eq. (5.11) is negative, so that it reduces the survival

probability. The strongest effect of this mixing occurs in the resonance region. For high

energies the 1-3 mixing is suppressed and Pµµ is again described well by the vacuum

oscillation formula. Notice that in some regions with zero Pvac the 1-3 mixing leads to

the positive contribution which is due to the last term in (5.5) so that the lines of of zero

probability are interrupted. Also there are no lines of maximal probability, as zero lines

for PA.

All the correction terms to Pvac are in general of the same order; therefore the modi-

fication of the vacuum probability is rather complex and not immediately related to Peµ.

The corrections are in general large in the regions of the parameter space where Peµ is

large, i.e. in the resonance regions and in the places of the resonance peaks and parametric

ridges of PA. Instead of continuous lines of maximal probability, in the case of non-zero
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1-3 mixing one obtains saddle points and local maxima. In particular, the saddle point of

the Pµµ probability appears in the mantle resonance region.

The structure of the transition probability Pµτ is similar to that of Pµµ.

In the antineutrino channel, the 2-flavor probability P̄2 is suppressed by matter and

the strongest transitions occur in the vacuum oscillation region. Some interference effects

are seen for the core domain but no substantial parametric enhancement is realized.

6. Discussion and conclusions

1. We have worked out a detailed and comprehensive description of neutrino oscillations

driven by non-zero 1-3 mixing inside the Earth. The description is given in terms of the

oscillograms of the Earth: contours of constant oscillation probabilities in the (Eν , Θν)

plane. In this first publication we have neglected the 1-2 mass splitting ∆m2
21, which is a

good approximation for high neutrino energies, Eν > 1 − 2GeV.

2. We found that the oscillograms have a regular structure with several generic features:

(i) the MSW peak in the mantle domain of the oscillogram; (ii) the MSW peak (ridge) in

the core domain, (iii) three parametric ridges in the core domain; (iv) regular oscillatory

pattern at low energies that has different features in the core and in the mantle domains

of the oscillograms. We presented a detailed description of these structures: their position

in the (Eν , Θν) plane, their evolution with changing 1-3 mixing and their dependence on

the density profile of the Earth.

The most interesting features of the oscillograms appear at relatively high energies,

Eν = (2 − 12) GeV, and Θν < 75◦, i.e. in the resonance region. Notice that this region is

not covered by the existing or forthcoming accelerator experiments, and on the other hand,

statistics in the current atmospheric neutrino experiments is too low. All these experiments

can only study very small effects on the “tails” of those interesting oscillation phenomena.

Exploration of the resonance regions thus constitutes a significant experimental challenge

for future experiments.

3. We studied the accuracy of the calculations based on the constant-density layers ap-

proximation to the Earth matter density profile. This approximation reproduces all the

features of the oscillograms qualitatively well, though there are some quantitative differ-

ences and shifts of the structures in the (Eν , Θν) plane. The strongest deviations appear

in the domain of deep mantle trajectories and high energies (Eν > 6GeV).

4. We showed that a complete physics interpretation of the oscillograms can be given

in terms of different realizations of just two conditions: (i) the amplitude (or resonance)

condition and (ii) the phase condition. In the case of one layer of constant density these

conditions are reduced to the MSW resonance condition and half-phase equality φ = π/2+

πk. They determine the position of the absolute maxima of the transition probability.

For three layers of constant densities the amplitude condition is reduced to the parametric

resonance condition. This condition describes the position of the parametric ridges. The

phase condition gives the position of the maximum along the ridge.
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We show that the parametric resonance condition formulated for two layers describes

the extrema and the ridges in the three layers case. This is a consequence of the symmetry

of the overall matter density profile. In the case of three layers, the amplitude and the

phase conditions determine not only the absolute maxima of the transition probability (as

in the one-layer case), but also its local maxima and saddle points.

5. We generalized the amplitude and phase conditions to the case of varying densities

in each layer. The generalization is not unique. In this connection we introduced the

generalized resonance condition and the collinearity condition. The two conditions coincide

in the case of constant density layers with symmetric overall profiles but differ in the

non-constant density case. We showed that both these generalized conditions describe

the positions of various structures of the oscillograms, in particular, of the extrema, very

accurately.

6. We derived approximate analytic formulas for the probabilities. For this we have

developed a perturbation theory in deviations from the constant density ∆V/V̄ . We showed

that already the first order approximation in ∆V/V̄ reproduces the oscillograms for realistic

(PREM) density profile of the Earth with a high precision. Again, the symmetry of the

density profile plays the key role.

7. We studied the dependence of the oscillograms on θ13. The changes of the oscillograms

with increasing θ13 have a character of flow of high probabilities towards the regions of larger

Θν . The lines of flow shift only weakly with changing θ13. We found that the transition

probability PA can be of the order 1 for sin2 2θ13 as small as 0.01. Therefore, even if the

next generation of reactor and accelerator experiments fail to find non-zero 1-3 mixing,

significant oscillation effects due to this mixing may still show up in atmospheric neutrino

data. Those are expected in the region Eν ∼ 3 − 5 GeV and Θν ≈ 0◦ − 26◦.

8. We studied the dependence of the oscillograms on the density profile of the Earth. We

found the regions in the (Eν , Θν) plane where the sensitivity to various perturbations of

the density profile is maximal, and we identified the corresponding effects. In particular,

the dependence of the oscillograms on flattening of the density distributions inside the

layers, on the changes of the overall densities of the core and mantle and on the position

of the border between the mantle and the core has been quantified. This analysis can be

used for discussions of the oscillation tomography of the Earth.

9. The oscillograms for different flavor channels as well as for neutrinos and antineutrinos

have been constructed and their properties discussed.

Various applications of the results obtained in this paper will be presented in forth-

coming publications.
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